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Abstract. Although almost all states are localized in random chains, specific transmitting 
statesexist at randomenergies. Westudy thetransmittancein thevicinityofthese resonances. 
We also study the transmittancesat these resonancesandcarryouta multifractal analysison 
them. The transmittances at resonance seem to have characteristics of both extended and 
localized states. 

1. Introduction 

It has been known for some time that in tight-binding one-dimensional chainswith short- 
ranged overlap integrals, the electronic spectrum is a dense point set. almost all of which 
supports exponentially localized states. The existence of a few transmitting states has 
also been known for some time. These are the so-called stochastic resonances or Azbel 
resonances (Azbel 1983a, b, 1984, Azbel and Rubinstein, 1983). Pendry (1987) exam- 
ined the reasons for the existence of these resonant states. He speculated that these 
states could be necklace states, i.e. a linear combination of a number of localized states 
almost degenerate in energy, but whose centres of localization are at different parts of 
the chain. They have sufficient overlaps between themselves and together span the 
chain. Azbel and Soven (1983) had earlier estimated the width of these resonances and 
the way in which these scale with the sizes of the chains. 

2. Formalism 

Since the width of the Azbel resonances decreases with length as exp( - 2 L / f )  where 5 
is ameasure of the localization length, the search for Azbel resonances begins with quite 
small chains. For small chains, states at several energies will show a large transmittance. 
Many of these are actually localized states whose localization lengths are larger than the 
chain length. As we increase the length of the chain, most of these states no longer show 
non-zero transmittance. However, even at quite large lengths, some transmitting states 
remain. These are the Azbel resonances. The neighbourhood of these energies are then 
searched for very large lengths carefully and at a very fine energy mesh to locate the 
position of the resonances. 
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In this work, for the small and moderately long chains we use the vector recursion 
technique of Godin and Haydock (1988) to examine the transmittances. For the very 
long chains, as the vector recursion technique is rather slow, we use the transfer matrix 
method to estimate the transmittances. 

The basic model for our system is the so-called Anderson model with diagonal 
disorder: 

H =  E%@;@" + z ( v " + l @ ; + l @ "  + vn@:o"+l). ( 1 )  
n 

For diagonal disorder, E" = S(5. - 0.5) and all the Vn = 1. The E,-values are inde- 
pendent random variables uniformly distributed between 0 and 1, 6 is a measure of the 
strength of the disorder in the system and the energy is scaled in units of Vin this case. 

We shall establish the existence of Azbel resonances in the Anderson model. We 
shall also carry out a multifractal analysis of the transmittances in order to attempt to 
differentiate between extended, localized and Azbel states., 

The sample will be of length 2 N  and described by a Hamiltonian 
?N 

Hrnmple = 2 [E"*;@" + v(@;,+l@" + @AQn-l)1. ( 2 4  
"=I  

To the two ends of this chain at n = 1 and n = 2N we attach elementary, perfectly 
conductingsemi-infiniteleads. The purposeofthe leadsis to bearthe incoming, reflected 
and transmitted waves: 

H"", = x [ E " @ ; * .  + v"(Q;,*l@,, + (24 " = Z N  

ForsimplicitywetakeE'= E " =  ~ a n d V ' =  I/"= 1.ThesolutionsoftheSchriidinger 
equation in the two leads are known. These are travelling Bloch waves of the form 

Ylwds = 2 vn@L (3) 

with v, = A  exp(kin0). 
As the wave travels through the lead, its phase 0 changes from one site to the next. 

In the elementary, perfectlyconducting leads this change is determinate: cos 0 = E/2V 
where E is the energy of the incoming wave. 

In the vector recursion technique (Godin and Haydock 1988) we change to a new 
vector basis with annihilation operators 

@" = ( ' q n  ). 
'%V + I - " 

We choose the basis such that the sample Hamiltonian is block tridiagonal. Details of 
the numerical procedure has been described in recent work (Basu et a/ 1991): 

B ~ t I @ , + ,  = @ , , ( E I - A . ) - @ P . - , B , .  (4) 
The Schrodinger equation satisfies an equation identical with (4) with the wave- 

function vector amplitudes 
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Y" = (T j. 
2,w+n- I 

We have to supply the boundary conditions at the joints. An incoming wave 
C, exp(in8) qi  travels to the right along the incoming lead. As it reaches the sample, it 
is scattered. A reflected wave .Z,z r (E)  exp(-in8) q!, travels back along the same lead, 
while a transinifred wave &, t (E)  exp(in8) q! travels in the other lead. r (E)  and t (E)  are 
the reflection and transmission coefficients. The boundary conditions at the lead joints 
are given by 

and 

exp(i8) + r (E)  exp(-i8) 

r(E)exp(-i@) 

Since the lengthofthescattering part is finite, we have another boundarycondition. The 
uecrorchain terminatesafterNsteps,sothat yN+I = 0. From the boundaryconditionswe 
immediately obtain an expression for the scattering S-matrix: 

S N  = (:r!) = - [ ~ , v + l +  Y N + ~  e x p ( - i ~ ) ~ - ~ ( ~ ~ + ,  + YN+I exp(i8)). 

The rransmirrioiry T(E) is 1 ( E )  I* and the reflecrioiry R(E) is [ r (E)  1 2 .  
I n  the calculation of the reflection and transmission coefficients, r ( E )  and ( E )  

respectively, we first fix the energy E and then use the boundary conditions (9) and (11) 
to obtain two equations in these variables. Conversely, if we wish to locate the Azbel 
resonances at which T(E)  is almost 1 and R(E) is almost 0. we substitute these in (9) and 
use the boundary condition (11) as an equation in E .  The solutions of this, if they lie 
within the band, are the Azbel resonant energies. For a fixed size 2N of the sample, we 
can always numerically show the existence of the Azbel resonances. i t  may be noted 
that this is not a proof of the existence of such resonances at infinite sizes. 

It may be mentioned that for large system sizes (greater than lo') we have used a 
recursion technique with single-site transfer matrices (see, e.g., Liu and Chao 1986) as 
opposed to the vector recursion technique referred to above. This method has the 
advantage of being exponentially faster when one keeps on adding length elements at 
the end of the original chain but has the disadvantage of being limited to one dimension 
only. 

The transmitted wave is Y,"(E) = rhWo(E), so that (,,,(E) carries the information 
about the relative amplitude and phase of the transmitted wave for a sample of size N .  
The set {TZr(E) = ItN(E)12} then represents a set of measurements on a collection of 
chains of varying sizes {n}. The chain of size n + 1 is identical with the chain of size n up 
to the nth element. Note that this set is different in essence from the wavefunction 
amplitudes at different sites of a single isolated chain. For the multifractal analysis we 
shall use this set of transmittances properly normalized. Again, this analysis is different 
in essence from the multifractal analysis of wavefunction amplitudes for isolated chains. 
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The Qth moment of this distribution for any real value of Q is 

" = I  

where P, = T, (E)/T and T = Zn T,(E). This Qth moment is also called the partition 
function of the distribution (Halsey eta1 1986). 

P,v - N - e  

The indices z(Q), a andf(a)  are defined by the asymptotic behaviours 

Z(Q) - N-'(@) 

and the fraction of atoms having exponents between @and a t d a i s  " l a ) .  
The three exponents r(Q). (Y andf(cu) are related to each other by 

7(Q) = aQ -f(4 
= (Q - 1)Da. (6 )  

Dp is referred to as the generalized (Rinyi) dimension of index Q. As can be easily seen 
from (6) ,  (Y = dz/dQ. The curvature of the f (a) curve is 

Non-divergence of the curvature is a signature of genuine multifractality. 

differentiation (Chhabra and Jensen 1989): 
For numerical facility. a andf(cu) can also be computed directly, avoiding numerical 

a = -Z'(Q)/[z(Q) WN)1 f(4 = Il/ln(2N)lhlZ(Q)I - QZ'(Q)P(Q)) 
and the expression for C (Godrkche and Luck 1990) is 

1/C = [l/ln(2h3][Z'(O)'/Z(O)' - Z"(o)/Z(O)]. (7) 

3. Results and discussion 

We have studied transmittance versus the energy Eof the incoming electron numerically 
to obtain the resonant states. The width of the resonance peaks becomes narrower as 
the sample length is increased. Figure I shows the position of the Azbel resonance for 
an Anderson model with purely diagonal disorder. The resonance peak becomessharper 
as the length is increasedfrom30000 (in figure l(a)) to40000(infigure l(b)). Thestates 
over a very narrow energy region are transmitting while all the rest are localized. As 
seen in these figures, the resonant state persists with increasing~length but the energy at 
which resonance occurs tends to shift. For the length 30000 the resonance is at E = 
-0.3344 while for the length 40 000 it occurs at  E = -0.3385. 

Figure 2 shows the transmittance plot for Azbel resonant states. In both the length 
scales, the transmittance remains finite in most parts of the sample size. The sample is 
connected to perfectly conducting leads on both sides. So the transmittance at the 
incoming end is always equal to 1.  Figure 2(a) shows the transmittance at an Azbel 
resonance in a sample of length 30 000, while figure 2(b) shows the transmittance at the 
shifted Azbel resonance in a sample of length 40 000. Figure 2(c) shows the same for a 
localized state in a sample of length 100 000. Here the incoming lead has a transmittance 
equal to 1 and this falls off exponentially as the wave travels through the sample. The 
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Energy 

I Figure 1. Transmittance versus energy ( U )  

forachain of size 30 WO and (b)  for a chain 
of size 40 OW. 

wave is localized within a small length region from the incoming sides. In contrast with 
figures 2(a)  and 2(6) except for a small mesoscopic regime the transmittance rapidly 
goes to zero. 

The transmittances in these disordered samples show very large fluctuations from 
size to size and are highly fragmented. One of the powerful methods of analysing such 
fragmented objects is through the multifractal analysis described earlier in section 2 
(Halsey era1 1986). 

Figure 3 showsaplot of s(Q)versus Q forall three tqpesof state: extended, localized 
and Azbel. For the extended state, the graph is a straight line with an almost constant 
slope denoted by the broken line here. For a localized state, the graph consists of 
two separate straight lines of different slopes for positive and negative values of Q, 
continuous at Q = 0. This is shown by the chain curve. For the Azbel state, the graph is 
a straight line with a constant slope. Its slope is different from the extended case. It is 
denoted by the full curve in the figure. For extended states, P,- 1/N, so that 
Z(Q) - A"? This leads to r(Q) = Q - 1. which is a straight line with unit slope. For 
localized states, P, is significantly non-zero only in an interval of size L .  For positive and 
increasing Q the size of the interval over which Pg is significantly non-zero ( L ( Q ) )  
decreasesas Q increases. Z(Q) - L'-Q.  s ( Q )  - (1 - Q){ln[L(Q)]/ln N). Theslopeof 
this curve decreases from unity with increasing positive Q-value. For negative and large 



9060 C Basu et a1 

i 

i 

0 a 0 

c f 

c 
01 
c 

i 

0 
0 c. 
0 

0 
N 0 

=. 
0 0 

-f N 

0 0 
0 m 

0 

0 

c 0. 

" J  

0 
N 

0 

N 

- 
- 
0 

- 
0 0 

0 

0 
0 
N 



Azbel resonances 9061 

- 12.6 
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Q= - Q‘, PR = P i p  is now large over that interval over which P, is almost zero. If we 
estimate P, in the intervals of width E ,  then Z(Q) - N’(&)-a’ - N-’: 

r (Q’)  = Q’[(ln &)/(In N)] - (In ”)/(In N )  

where N’ = N - L(Q).  This is large and negative as E is small. These characteristics are 
clear in figure 3. Particularly in this respect the Azbel states resemble extended states. 
We expect this, as the nature of the localized states, i.e. non-zero in a small interval, 
whichisreflectedin thet(Q)versusQgraphsisnot sharedby the Azbelstates. However, 
theslope for the Azbelstatecurveis not unity, since thestates do not possess translational 
symmetry and P; # ( l /N).  

Figure 4 shows f(a) versus a curves for extended, localized and Azbel states at 
different sample lengths. Since numerical work is always carried out on finite samples, 
the study of the asymptotic behaviour of the a versusf(a) curves as the size increases is 
very important. 

Figure 4(a) shows the graph for an extended state. The state is for 6 = 0.01 and 
E = 0. For one dimension no true extended states exist for 6 > 0 but, for this weak 
disorder and energy, the state has a localization length much greater than 30 000, the 
maximum size taken, and for these lengths conveniently mimics extended states. For 
almost all values of Q,f (a)  - 1 and a - 1. The interesting point here is the behaviour 
of the graphs as we increase the length of the sample. For a sample of length 10 000 the 
f(a) versus a curve is the outermost full curve. The curve converges inwards as the 
length of the sample increases to 20 000 and 30 000 respectively. For larger lengths the 
curve will converge to the point (1,l) .  

Figure 4(b) shows the graph for a localized state. Here the curves move outwards as 
we increase the length scale. The interesting point to observe is that the densities of 
points near a,,,,,, and a,,, are very high whereas the intermediate region is sparsely 
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Figure 5. ( a )  em,” versus Q: (b )  emax versus Q. 

populated. This indicates clearly the fact that, for exponential localization, aml;s becom- 
ingsmaller and smaller corresponds to a large probability (which should ideally be about 
unity) for getting the electron within the localization length. a,, becomes larger and 
larger, implying that probability decays exponentially for lengths larger than the local- 
ization length. The asymptotic convergence is at the point (0,O) and (=, 1). 

Figure 4(c) shows the graph for an Azbel state. Here the graphs are spread out, with 
asignificant amrx - amincompared with the extendedstate although the peakstill occurs 
at (31.1). The behaviour of the graph with increasing lengths is, however, significantly 
different from the extended or localized case. Here a,,, and amin oscillate about some 
mean position. The graph narrows significantly as the length is increased from 5000 to 
10 000. However, after that the increase in length scale results in a close overlap on the 
amlo side but a small oscillation on the a,, side. As seen with increasing N the Azbel 
state shows finite (amin, a,,,). Unlike the extended state, emin # a,, and, unlike 
localized states, a,,, is finite. The true multifractal nature of the Azbel states resemble 
more closely the critical states in incommensurate systems. 

Figure4(dj compares the aversusf(a) curvesof alocalizedstate andan Azbelstate. 
As seen, the density of points in the curve for the Azbel state is uniform whereas for the 
localized state the points are concentrated at the two ends. 

Figure 5 shows the behaviour of amin and a,,, for an Azbel resonant state with 
increasing Q. Q is varied from 50 to 200 in figure 5(u). amin decreases in the beginning 
but approaches a constant value for Q a 110. Figure 5 ( 6 )  shows the Q variation from 
-50 to -200 to estimate a,,,,,. As expected, a,,,,, increases with increase in negative Q- 
value and reaches a fixed value from about Q = - 120. 

Figure 6 shows the behaviour of f(a,,) andf(cu,,,) with increasing Q for Azbel 
resonant state. Figure 6(u) shows the Q variation from 50 to 200 to findf(ami,). Figure 
6(6) shows the Q variation from -50 to -200 to findf(amax). fdecreasesfor both large 
positive and large negative values of Q. f(a,,,) decreases more sharply than f(ami.), 
going towards zero for large negative Q-values. However, any further increase in Q- 
value causes numerical instability and, to overcome this, quadruple precision (not 
available to us) has to  be used. 

Figure 7 shows the curvature for the multifractal analysis of the transmittances at 
Azbel resonance. Figure 7(u) gives the curvature Cversus 2 N ,  the sample size. Figure 
7(b)  gives the curvature C versus 1/2N (Godr2che and Luck 1990). As seen from the 
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curves, they are not divergent, indicating that the transmittances at Azbel resonance is 
truly multifractal in nature. 

The important parameters noted for the Azbel resonance are the following. 
( i )  At Q = 0, 1y = eo corresponding to the top of the f(a) curve. This lyu is the 

strength of a generic singularity. Here f= 1 but lyo = 1.003 27 for a sample length of 
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30000 and a. = 1.045 92 for a sample length of 40000. As a, > 1, the set of trans- 
mittances is genuinely multifractal (Godrkche and Luck 1990). 

(ii) amin and amaxconverge to constant valuesfor large Q-values as already discussed. 
amin = 0.9530 and a,,, = 1.0774. 

(iii) At Q = 1, a= el =f(a,) = D,. This is called the dimension of the measure. 
Here D, = 0.9968 for 2N = 30000 and D, = 0.9653 for 2N = 40 000. 

In conclusion, Azbel resonant states exist for almost all configurations. The wave- 
functions at these resonances are transmitting. The set of normalized transmittances at 
different sample sizes are multifractal in nature and resemble neither truly extended 
nor truly localized states. The wavefunction amplitudes show clumped behaviour. We 
propose to extend the multifractal analysis to the two-point correlation functions 
(Chhabra and Jensen 1990) to study this characteristic. This will be reported in  a 
subsequent communication. 
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